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1 DEVELOPMENT DATA PREPARATION 

1.1 SEGMENTATION OF THE FIXED (LIMITED) TRAINING CORPUS 

The training data segments for the mandatory fixed training task made available by NIST was 

derived primarily from previously released data sources (Callhome, Callfriend, Mixer3, 

Switchboard, and VOA). Error! Reference source not found. shows a breakdown of the 

numbers of cuts and the speech duration (post-SAD) available for each language in the fixed 

training data set. 

CODE LANGUAGE Cuts 
Speech 

(hrs) 
CODE LANGUAGE Cuts 

Speech 

(hrs) 

ara-acm Iraqi 2206 75.59 por-brz Braz. Port. 1838 5.96 

ara-apc Levantine 4073 266.67 qsl-pol Polish 695 32.14 

ara-arb MSA 912 8.18 qsl-rus Russian 2021 37.80 

ara-ary Maghrebi 919 46.91 spa-car Carib. Spa. 194 30.59 

ara-arz Egyptian 440 97.27 spa-eur Eur. Spa. 366 8.55 

eng-gbr British Eng. 147 2.10 spa-lac Lat. Am. Spa. 160 15.30 

eng-sas Indian Eng. 1689 25.37 zho-cdo Min 209 6.46 

eng-usg Amer. Eng. 2448 165.92 zho-cmn Mandarin 4131 200.70 

fre-hat Hatian Cr. 2192 110.79 zho-wuu Wu 234 10.36 

fre-waf West Afr. Fr. 1229 7.02 zho-yue Cantonese 2382 123.61 

Table 1: Cut and speech duration breakdown of data in the fixed training set. 

In preparation for the 2015 NIST language identification evaluation the NIST data was separated 

into training and test sets to enable system development The 5,119 distributed files were 

separated by language into a 60% train set and a 40% test set. Because the durations of the files 

Distribution A: Public Rlease
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range from 10 seconds to 30 minutes, the files were separated into sub-segments. SAD marks 

were used to extract multiple segments from the files such that resulting durations were 

uniformly distributed from 3 to 30 seconds. Error! Reference source not found. shows 

histograms of the durations of the sub-segments extracted from the training and test set. This 

expanded data set will give us the ability to calibrate the systems based on the duration seen in 

training and testing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Histogram plots for the durations of the sub-segments for the train and test sets. 

 

1.2 OPEN (UNLIMITED) DATA TRAINING CORPUS 

Data for the unlimited data task was obtained by searching back through prior speech corpora for 

suitable segments. The labeled sources that were available to augment the data supplied by NIST 

are listed in Table 2: Labeled sources for training data that were available to augment the limited 

data training set. The amount of speech in each cut varied widely but is concentrated around 30 

seconds. Table 3 shows a breakdown of the number of cuts and the speech duration (post-SAD) 

available for each language in the complete (NIST supplied plus augmented) unlimited training 

data set. 
  

Train set Test set 
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LANGUAGE Sources Type Cuts 

Arabic.egyptian None available   

Arabic.iraqi LRE11, Appen CTS 1788 

Arabic.levantine LRE11, Fisher, Appen CTS 3623 

Arabic.maghrebi LRE11 BNBS 505 

Arabic.msa LRE11 BNBS 506 

Chinese.cantonese LRE09, Babel CTS, BNBS 2359 

Chinese.mandarin LRE05-07-09-11, Callfriend, OHSU CTS, BNBS 3693 

Chinese.minnan LRE07-09 CTS 168 

Chinese.wu LRE07-09 CTS 189 

Spanish.caribbean LRE07 CTS 74 

Spanish.european Ahumada CTS 328 

Spanish.latinamerican OHSU (Mexican) CTS 130 

Portuguese.brazilian LRE09, OGI-22, VOA scrape CTS, BNBS 1791 

English.american LRE05-07-09-11, Callfriend, OHSU CTS 2088 

English.indian LRE07-09-11, OHSU, OGI-22 CTS 1271 

English.british UK-MI5 SID CTS 148 

Polish LRE11 CTS, BNBS 208 

Russian LRE07-09-11, Callfriend CTS, BNBS 1551 

West African French LRE09, VOA scrape BNBS 1195 

Haitian Creole Babel, VOA scrape CTS, BNBS 1869 

Table 2: Labeled sources for training data that were available to augment the limited data training set. 

 

CODE LANGUAGE Cuts 
Speech 

(hrs) 
CODE LANGUAGE Cuts 

Speech 

(hrs) 

ara-acm Iraqi 2206 75.59 por-brz Braz. Port. 1838 5.96 

ara-apc Levantine 4073 266.67 qsl-pol Polish 695 32.14 

ara-arb MSA 912 8.18 qsl-rus Russian 2021 37.80 

ara-ary Maghrebi 919 46.91 spa-car Carib. Spa. 194 30.59 

ara-arz Egyptian 440 97.27 spa-eur Eur. Spa. 366 8.55 

eng-gbr British Eng. 147 2.10 spa-lac Lat. Am. Spa. 160 15.30 

eng-sas Indian Eng. 1689 25.37 zho-cdo Min 209 6.46 

eng-usg Amer. Eng. 2448 165.92 zho-cmn Mandarin 4131 200.70 

fre-hat Hatian Cr. 2192 110.79 zho-wuu Wu 234 10.36 

fre-waf West Afr. Fr. 1229 7.02 zho-yue Cantonese 2382 123.61 

Table 3: Cut and speech duration breakdown of all data available for the unlimited training set. 

 

During development testing it was found that using all the extra data to augment the training data 

provided by NIST hurt language recognition performance for some clusters. Therefore, another 

set of runs was performed in which the limited set was augmented by the extra data from each of 

the languages in turn. It was found that only 3 of the languages contributed to improved 
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performance: Brazilian Portuguese, British English, and Arabic MSA. Consequently, reported 

results for the unlimited task included extra data from these languages only. 
 

 

2 SYSTEMS 

A total of 6 systems were developed at MIT-CSAIL and 5 systems at MIT Lincoln Laboratory 

(MIT-LL). 

MIT-CSAIL Systems 

BNF1: CSAIL bottleneck i-vector system 

CNT1: Multinomial i-vector system trained with ASR senone posteriors 

CNT2: Multinomial i-vector system trained with language class targets posteriors 

CNT3: Multinomial i-vector system trained with both ASR senone and language class targets 

BAUD: Unsupervised DNN BNF systems 

MIT-LL Systems 

MMI: MMI trained Gaussian classifier using the BNF features 

IVEC: i-vector classifier trained using SDC features 

BNF2: i-vector classifier trained using the BNF features  

STATS: i-vector classifier trained using the DNN posteriors and SDC features 

PITCH1: i-vector classifier trained using SDC and pitch features 

PITCH2: i-vector classifier trained using BNF and pitch features 

 

2.1 CSAIL BOTTLENECK I-VECTOR SYSTEM (BNF1) 

The Deep Neural Network architecture that we used for this system was composed of seven 

hidden layers. The sixth layer was based on linear activation nodes with a dimension of 80. This 

hidden layer was used to extract the bottleneck features. The rest of the hidden layers used 

sigmoid activation with 1024 neurons. This DNN was trained on 90% of the Switchboard phase 

1 dataset, with the 10% remaining data used as the development set. We used the Kaldi toolkit to 

extract 4168 senones posteriors. The trained DNN was based on 21-stacked PLP frames of 

dimension 13 and both first and second derivatives [Richardson2015]. 

 

The bottleneck feature vectors were then normalized to a standard normal distribution for each 

file. These features were used to train the GMM-UBM and I-vector models. A UBM comprising 

2048 Gaussians was trained on the training dataset. The i-vector of dimension 400 [Dehak2011] 

was trained on the training data as well as on augmented audio data transformed using both the 

speed (0.9,1.1) and tempo (0.9,1.1) options of sox toolkit [Ko2015]. In general the data was 

augmented by a factor of 4. This augmented data and short cuts of different durations (3s, 10s, 

30s) extracted from the same dataset were used to train Linear Discriminant Analysis (LDA), 

Within Class Covariance Normalization (WCCN) and the mean for each class. We applied 

cosine scoring to compute to compute the decision score [Singer2012]. This scoring is a 

simplified version of the Von Mises Fisher distribution. 
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2.2 ASR COUNTS SUBSPACE SYSTEM (CNT1) 

We trained a DNN using the same setup as the one used to extract bottleneck features. This DNN 

was characterized by 7 hidden layers of dimensions 2048:1024:2048:1024:2048:1024:2048 and 

4168 posterior outputs. It was also based on the same 21-stacked PLP frames. This DNN was 

used to extract posterior statistics of all hidden layers. The Subspace Multinomial Model was 

then applied to model these zero order statistics. We trained an 800-dimension subspace on the 

long and short cuts of the original audio but without the speed/tempo manipulated cuts. WCCN 

and the mean of each class were trained in the short cuts of the augmented data similar to the 

bottleneck system. Cosine scoring was applied to compute the final decision score. 

 

2.3 LID COUNTS SUBSPACE SYSTEM (CNT2) 

This system is very similar to the previous one (ASR counts subspace system) except that we 

used a DNN with stacked PLP features as input and the language class as output. This DNN was 

composed of 7 hidden layers of dimensions 2048:1024:2048:1024:2048:1024:2048 and 20 

posterior outputs representing the language classes. Using the DNN, we extracted the posterior 

statistics from all hidden layers. These statistics were then modeled with a Subspace Multinomial 

Model of dimension 800. This subspace was trained on the long and short cuts of the original 

audio but without the speed/tempo manipulated cuts. We used the same cosine scoring as 

previous systems. 

 

The CNT3 system is the combination of CNT1 and CNT2. 

 

 BAUD SYSTEM DESCRIPTION (BAUD)2.4  

This bottleneck feature-based system is similar in concept to the one proposed in 

[Richardson2015], but instead of training the DNN using senone targets from the tri4a step of the 

Kaldi SWB recipe, this system trained its bottleneck features using targets from an unsupervised 

unit discovery process, which we detail below. Aside from this new set of targets, the framework 

of this system follows the exact same format as [Richardson2015]. Specifically, the DNN stacks 

±10 frames of 13-dimensional PLP features with their first- and second-order derivatives as input 

(i.e., (10+1+10) * (13+13+13) = 819 dimensions) to a 7-layer DNN with a 64-unit linear 

bottleneck at the second-to-last (i.e., 6th) layer. All other hidden layers contain 1024 units with 

sigmoid activations. 

 

We extract bottleneck features from the provided training data to build our 2048-Gaussian UBM. 

To train our 600-dimensional i-vector extractor, we used the UBM data as well as augmented 

audio data transformed using the sox toolkit, which varies both speed and tempo at rates of 0.9x 

and 1.1x [Ko2015]. This increases the amount of data by a factor of four. Finally, i-vectors from 

the training data, the speed/tempo-augmented data, and a set of shorter cuts of various durations 

(3s, 10s, 30s) extracted from the same training data were all used to train a Linear Discriminant 

Analysis (LDA) transform and a Within-Class Covariance Normalization (WCCN). After 

applying all these transformations, we compute a mean for each language class and obtain 

decision scores for each test i-vector via cosine scoring, which can be seen as a simplified 
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version of the von Mises-Fisher distribution [Singer2012]. Note that these steps are equivalent to 

that of the CSAIL bottleneck i-vector system; the only difference being in the bottleneck features 

themselves. 

 

The unsupervised unit discovery process (also known as Bayesian acoustic unit discovery, or 

BAUD) is based off the work in [Lee2012], but was subsequently re-implemented in Kaldi with 

a few simplifications to make the computation more tractable [Harwath2015]. The main idea is 

to learn phone-like units on speech without parallel text data. Each unit is represented by a 3-

state HMM that emits acoustic feature vectors via a GMM. In [Lee2012], everything was 

formulated in a Bayesian manner to take advantage of its self-regularizing model-selection 

properties, and inference was done via Gibbs sampling. In the faster re-implementation, we used 

a more heuristic initialization, which included specifying the number of units to learn, and 

accumulated GMM statistics via maximum likelihood. 

 

We learned 100 units on all of the provided training data. This resulted in a large set of "phone 

sequences" from which we could train a speech recognizer in Kaldi. Carrying through to the tri2 

step of the SWB recipe resulted in an acoustic model containing 2604 senones modeled using 

30,000 Gaussians. The frame-level alignments for these senones were used to train the DNN for 

bottleneck feature extraction. 
 

2.5 I-VECTOR CLASSIFIER (IVEC)  

The IVEC system used Shifted Delta Cepstra features as input. The SDC features used speech 

windowing of 20 ms length and 10 ms shift. Window DC was subtracted and a low energy dither 

was added to the windowed speech to avoid digital zeros. RASTA filtering of log-energy 

filterbank sequences was applied. SDC features are extracted using parameters d=1, p=3, k=7, 

and static cepstra were prepended to produce a 56 dimensional feature vector. 

 

The i-vector classifier used a 2048 component GMM and 600 dimensional i-vector subspace. 

The total covariance matrix was trained using the EM algorithm. The system used simple cosine 

scoring because it produced performance superior to that of WCCN and PLDA scoring in our 

initial experiments. 

 

2.6 I-VECTOR CLASSIFIER TRAINED USING BNF FEATURES (BNF2) 

A DNN classifier for the BNF2 system was trained over a 100 hour subset of the Switchboard 1 

training set. The subset was determined by the Kaldi training recipe for Switchboard. The DNN 

consisted of 7 layers of 1024 nodes each with a 64 node linear bottleneck at the second to last 

layer. The DNN was trained using 4199 output classes also determined by the Kaldi training 

recipe. The input to the DNN consisted of 39 PLP features (which include ∆ and ∆∆ coefficients) 

warped to fit a standard Gaussian distribution over a 300 frame window and stacked using a 

symmetric ±10 frame window. Thus the input to the DNN consisted of 819 features (39 features 

over 21 stacked frames). More details can be found in [Richardson2015]. 

 

The BNF2 systems features were then fed into the i-vector classifier described in Section 2.5. 
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2.7 AN MMI TRAINED GAUSSIAN CLASSIFIER USING THE BNF FEATURES 

(MMI) 

The MMI system is a trained Gaussian classifier [Matejka2007] using the BNF features of 

system BNF2. 

 

2.8 THE I-VECTOR CLASSIFIER TRAINED USING THE DNN POSTERIORS AND 

SDC FEATURES (STATS) 

This i-vector based system used the 4199 DNN posteriors and the 56 SDC features to form 

supervectors. The rest of the i-vector system is the same (EM training is used to estimate the T-

matrix and the sub-space dimension for the i-vectors is 600) [Lei2014, Richardson2015]. The 

core i-vector classifier is described above (IVEC). 

 

2.9 SDC, BNF, AND PITCH I-VECTOR SYSTEM (PITCH1, PITCH2) 

The pitch based systems used pitch stacked with the SDC features of the IVEC system 

(PITCH1) and the bottleneck features of the BNF2 system (PITCH2). Pitch features were 

generated on a per-cut basis. Praat [Boersma2013] was used to calculate F0 and the 

corresponding voicing decision. This was done at 10 millisecond frame rate, with the F0 range 

set between a minimum of 65 Hz and a maximum of 400 Hz. To mitigate the effects of pitch 

doubling and pitch having, the highest and lowest 3% of F0 values were removed. The log of F0 

was taken and its mean over the voiced frames of the cut was subtracted. Linear interpolation of 

the log(F0) measure was performed through the unvoiced frames and those with the most 

extreme F0 values were removed. Delta-log(F0) was calculated as the difference between the 

log(F0) value 3 frames forward and 3 frames back in time. The values of log(F0) and delta-

log(F0) were stacked with the corresponding SDC frames, producing a new 58 dimensional 

feature vector for the PITCH1 system. The PITCH2 system used values of log(F0) and delta-

log(F0) stacked with the BNF2 systems features. 

 

The i-vector system IVEC described in Section 2.5 was used as a classifier for both pitch-based 

systems. 
 

 

3 FUSION FOR THE FIXED (LIMITED) CONDITION 

Prior to system fusion, each system was calibrated using an MMI trained tied covariance 

Gaussian backend with duration normalization [McCree2008, Singer2012]. The input features 

and the output scores for the calibration subsystem corresponded to each of the 20 languages 

classes. Fusion used a simple logistic regression with a single weight for each system 

[Singer2012]. The candidates for fusion included the 6 systems developed at MIT Lincoln 

Laboratory (MIT-LL) and the 5 systems developed at MIT CSAIL (CSAIL), as described in 

Section 2. 
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The top systems for fusion were selected by sweeping across all system combinations using 

scores on our test partition. The backend for the final evaluation submission was trained over 

scores on the entire fixed data training corpus (including both our training and test partitions). 

 

WCCN versions of the BNF1 and CNT1-3 systems with and without LDA were evaluated for 

fusion as well as an additional cosine (COS) scoring version of the BNF1 system bringing the 

total number of CSAIL system outputs to 10. Table 4 summarizes the MIT-CSAIL scoring sub-

system types used for fusion. 

 

System WCCN LDA+WCCN Cosine 

BNF1    

CNT1    

CNT2    

CNT3    

BAUD 
 

  

Table 4: MIT-CSAIL scoring type sub-systems 

 

3.1 FUSION SWEEP 

Given the difficulty in evaluating all possible fusions of 16 system outputs we adopted a three 

stage strategy for system selection: 

Stage 1 sweep: 

The first stage of system selection included only the outputs of the 6 MIT-LL systems. From this 

sweep we kept all systems except for MMI. 

Stage 2 sweep: 

Next, the 5 remaining MIT-LL systems together with all three scoring type versions of the BNF1 

system were combined, and from the resulting 8-way system fusion analysis the BNF1, 

STATS/COS, and PITCH1/COS systems were retained and the IVEC/COS, BNF2/COS, and 

PITCH2/COS systems were dropped. 

Stage 3 sweep: 

Finally, all 10 CSAIL system in together with the remaining MIT-LL STATS and PITCH1 

systems were evaluated. From an analysis of all possible 12-way combinations we chose to keep 

the 5 systems listed in Table 5 for our primary fixed-task submission. 

System 

BAUD/LDA+WCCN 

CNT1/WCCN 

BNF1/LDA+WCCN 

PITCH1/COS 
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STATS/COS 

Table 5: Final system fusion for primary fixed submission. 

We also selected the single best system (BNF1/LDA+WCCN) as a secondary submission. 

 

3.2 PER-CLUSTER FUSION 

Another secondary system was submitted by finding the top ranking fusion for each language 

cluster in the Stage 3 fusion sweep described above. The systems used for each language cluster 

are shown in Table 6. 

 

Table 6: Per-language cluster system fusion. 

 

 

4 FUSION FOR THE OPEN (UNLIMITED) TRAINING CONDITION 

Multi-lingual DNN: Inspired by the work described in [Fer2015], a multi-task DNN was trained 

using data from 5 IARPA Babel languages described in Table 7. A DNN was trained using 60 

hours of data randomly selected from each language for a total of 300 hours of data. The inputs 

for the DNN were the same stacked features used for the BNF2 system. The DNN architecture is 

also similar to the BNF2 system in that it has 7 layers of 1024 nodes each and the second to last 

layer is a 64 node linear bottleneck. However for the multi-lingual DNN the last hidden layer is 

different for each of the five languages. Stochastic gradient descent training for the multi-lingual 

DNN proceeds by loading a mini-batch with data from each language in sequence until the 

average validation cost across all languages no longer decreases. 

 

Language IARPA Build Pack 

Cantonese IARPA-babel101b-v0.4c 

Pashto IARPA-babel104b-v0.bY 

Turkish IARPA-babel105b-v0.4 

Tagalog IARPA-babel106b-v0.2g 

Vietnamese IARPA-babel107b-v0.7 

Table 7: 5 Babel languages used for training a multi-lingual BNF. 

Language cluster Systems 

Arabic BAUD, CNT1/LDA+WCCN, BNF1/WCCN, STATS/COS 

Chinese BAUD, CNT1/WCCN, BNF1/LDA+WCCN, STATS/COS 

English CNT1/LDA+WCCN, BNF1/COS, BNF1/WCCN, STATS/COS 

French CNT3/WCCN, BNF1/LDA+WCCN 

Iberian IVEC, BNF1/COS, PITCH1/COS, PITCH2/COS 

Slavic BNF1/COS, PITCH2/COS, STATS/COS 
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In addition to the 5 systems used in the limited training primary system submission, 5 more 

systems were trained on language recognition data that was not part of the fixed LRE15 data set. 

These systems are listed in Table 8. 

 

System Description 

BNF2UC The BNF2 system trained on the open data set. 

IVECUC The IVEC system trained on the open data set. 

STATSUC The STATS system trained on the open data set. 

PITCH2UC The PITCH2 system trained on the open data set. 

MLBNFUC An i-vector system trained using bottleneck features from 

the multi-lingual DNN described above. 

Table 8: Systems used for the open submission fusion sweeps. 

 

Both WCCN and cosine scoring outputs of these systems were used in evaluating possible 

system combinations for system fusion. This amounts to a total of 15 possible systems for fusion: 

the 10 systems in Table 8 for both WCCN and cosine scoring together with the 5 systems used 

for the primary limited submission 

4.1 FUSION SWEEP 

As with the fixed primary system fusion sweeps described above, given the difficulty in 

evaluating all possible fusions of 15 system outputs for the open submission, we adopted a three 

stage strategy. 

Stage 1 sweep: 

The first stage of system fusion sweeps evaluated all combinations of the 10 outputs (WCCN and 

cosine) from the 5 systems in Table 8. Analysis of the results for these 10-way combinations led 

to selecting the following three systems: STATSUC/COS, PITCH2UC/WCCN, and 

MLBNFUC/COS. 

Stage 2 sweep: 

The final system fusion sweep included 5 systems used in the final fixed training condition 

submission and the three systems selected in the previous stage for a total of 8 systems. From the 

sweep of all possible system combinations, the systems listed in Table 9 were selected for the 

primary open training system fusion submission. 

 

System 

STATSUC/COS 

MLBNFUC/COS 

CNT1/WCCN 
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BNF1/LDA+WCCN 

PITCH1/COS 

Table 9: Final system fusion used for the open system submission. 

 

Two other systems were submitted for the open training condition: the single-best 

MLBNFUC/COS system and the top scoring 3-system combination consisting of the 

MLBNFUC/COS, BNF1/LDA+WCCN, and PITCH1/COS systems. 
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